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This paper proposes observer-based piecewise multi-
linear controllers for nonlinear systems using feed-
back and observer linearizations. The piecewise model
is a nonlinear approximation and fully parametric.
Feedback linearizations are applied to stabilize the
piecewise multi-linear control system. Furthermore,
observer linearizations are more conservative in mod-
eling errors compared with feedback linearizations.
In this paper, we propose robust observer designs for
piecewise multi-linear systems. Moreover, we design
piecewise multi-linear controllers that combine the ro-
bust observer with various performance such as a reg-
ulator and tracking controller. These design meth-
ods realize a separation principle that allows an ob-
server and a regulator to be designed separately. Ex-
amples are demonstrated through computer simula-
tion to confirm the feasibility of our proposals.

Keywords: observer-based controller, piecewise multi-
linear model, feedback linearization, observer lineariza-
tion problem

1. Introduction

Piecewise control systems, which are nonlinear con-
trols, have been widely studied. They are classified into
piecewise linear and piecewise nonlinear systems. Piece-
wise linear (PL) systems, which are fully parametric,
have been intensively studied in relation to nonlinear sys-
tems [1–4]. The piecewise linear approximation has gen-
eral approximation capability for nonlinear functions with
a given precision. The parametric piecewise approxima-
tion of nonlinear control systems is promising for con-
structing a system model.

A piecewise multi-linear (PML) approximation was
proposed in [5]. The PML approximation also has gen-
eral approximation capability for nonlinear functions with
a given precision. The PML model is a piecewise nonlin-
ear systems. A multi-linear function as a basis of PML

approximation is (as a nonlinear function) the second sim-
plest one after a linear function. The PML model has
the following features: 1) It is derived from fuzzy if-then
rules with singleton consequents; 2) It is built on piece-
wise hyper-cubes partitioned in the state space; 3) It has
general approximation capability for nonlinear systems;
4) It is a piecewise nonlinear model, the second simplest
after a PL model; 5) It is continuous and fully paramet-
ric. So far, we have provided the necessary and sufficient
conditions for the stability of PML systems with respect
to Lyapunov functions in the two dimensional case [6],
where membership functions are fully considered. As the
stabilizing conditions are represented by bilinear matrix
inequalities [7], a long computing time is required to ob-
tain a stabilizing controller. To overcome this drawback,
we derived the stabilizing conditions [8] based on full-
state feedback linearization approaches. In the PML mod-
eling method, only partial knowledge of vertices in piece-
wise regions is necessary not the overall knowledge of
an objective plant. The control system is applicable to a
wider class of nonlinear systems compared with conven-
tional feedback linearization.

This paper deals with observer-based PML controller
designs for nonlinear systems via observer linearization.
We proposed some observer design methods for piecewise
systems in [9] and [10]. The paper [11] dealt with the nec-
essary and sufficient conditions for observer linearization
and showed that a PML model-based linearized observer
could be applied to a wider system compared with the
conventional one. Observer linearizations are more con-
servative in modeling errors compared with feedback lin-
earizations. In this paper, we propose robust observer de-
signs for piecewise multi-linear systems. In addition, we
design piecewise multi-linear controllers that combines
the robust observer with various performance such as a
regulator and a tracking controller. These design meth-
ods realize a separation principle that allows observers
and controllers to be designed separately. Examples are
demonstrated through computer simulation to confirm the
feasibility of our proposals.
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2. Canonical Form of PML Models

We introduce the PML models proposed in [5]. For
x ∈ Rσ1...σn , the PML model (1) is constructed from the
vectors d(σ1, . . . ,σn), f (σ1, . . . ,σn), g(σ1, . . . ,σn), and
h(σ1, . . . ,σn).⎧⎪⎨

⎪⎩
ẋ = f +gu,

y =h,

. . . . . . . . . . . . . (1)

where x ∈ Rn, f ∈ Rn, g ∈ Rn×m, u ∈ Rm, y ∈ Rp, and
h ∈ Rp,

f =
σ1+1

∑
i1=σ1

ω i1
1 (x1) · · ·

σn+1

∑
in=σn

ω in
n (xn) f (i1, . . . , in),

g =
σ1+1

∑
i1=σ1

ω i1
1 (x1) · · ·

σn+1

∑
in=σn

ω in
n (xn)g(i1, . . . , in),

h =
σ1+1

∑
i1=σ1

ω i1
1 (x1) · · ·

σn+1

∑
in=σn

ω in
n (xn)h(i1, . . . , in),

x =
σ1+1

∑
i1=σ1

ω i1
1 (x1) · · ·

σn+1

∑
in=σn

ω in
n (xn)d(i1, . . . , in),

ωσ j
j (x j) =

d j(σ j +1)− x j

d j(σ j +1)−d j(σ j)
,

ωσ j+1
j (x j) =

x j −d j(σ j)
d j(σ j +1)−d j(σ j)

,

j = 1, . . . ,n and ω i
j(x j) ∈ [0, 1]. Here, we assume

f (0,0) = 0 and d(0,0) = 0 to guarantee ẋ = 0 for x = 0.
Fig. 1 shows a piecewise region of f in the two dimen-
sional case.

A vector d(σ1, . . . ,σn) and rectangle Rσ1...σn are
defined, respectively, in n-dimensional space as
d(σ1, . . . ,σn) ≡ (d1(σ1), . . . ,dn(σn))

T and

Rσ1...σn ≡ [d1(σ1),d1(σ1 +1)]× [d2(σ2),d2(σ2 +1)]
· · ·× [dn(σn),dn(σn +1)],

where

x1 ∈ [d1(σ1), d1(σ1 +1)],

x2 ∈ [d2(σ2), d2(σ2 +1)],

...

xn ∈ [dn(σn), dn(σn +1)],

σi is an integer: −∞ < σi < ∞ where di(σi) < di(σi + 1),
d(0)≡ (d1(0),d2(0), . . . ,dn(0))T , and i = 1,2, . . . ,n. The
superscript T denotes a transpose operation. The vec-
tors f (σ1, . . . ,σn), g(σ1, . . . ,σn), and h(σ1, . . . ,σn) corre-
spond to the vector d(σ1, . . . ,σn) as

d1(σ1)

d1(σ1 +1)

d2(σ2)

d2(σ2 +1)

f (σ1 +1,σ2)

f (σ1,σ2)

f (σ1,σ2 +1)

f (σ1 +1,σ2 +1)

ωσ1+1
1 (x1)

ωσ1
1 (x1)

ωσ2+1
2 (x2)

ωσ2
2 (x2)

f

x1

x2

Fig. 1. Piecewise region of f in the two dimensional case.

f (σ1, . . . ,σn) ≡

⎛
⎜⎝

f1(d1(σ1), . . . ,dn(σn))
...

fn(d1(σ1), . . . ,dn(σn))

⎞
⎟⎠ ,

g(σ1, . . . ,σn) ≡

⎛
⎜⎝

g1(d1(σ1), . . . ,dn(σn))
...

gn(d1(σ1), . . . ,dn(σn))

⎞
⎟⎠ ,

h(σ1, . . . ,σn) ≡

⎛
⎜⎝

h1(d1(σ1), . . . ,dn(σn))
...

hp(d1(σ1), . . . ,dn(σn))

⎞
⎟⎠ .

The overall PML model is obtained automatically when
all the vertices of the vectors d, f , g, and h are assigned.
Tables 1–4 show the values of the vectors d, f , g, and h in
the two dimensional case. Note that the piecewise model
can be constructed with only the vertex values of the rect-
angle regions without the model dynamics information.
In our method, the piecewise model and controller can be
represented as lookup tables (LUTs) and the dynamics is
constructed as an interpolation of the vertices in the LUTs.

3. Regulator and Observer Designs for PML
Systems

3.1. PML Controller
Consider the PML system (1), where f , g, and h are

assumed to be sufficiently smooth in a domain D ⊂ Rn.
The mappings f : D→Rn and g : D→Rn are called vector
fields on D.

We show a feedback linearizing controller [12] for the
PML systems using an input-output feedback lineariza-
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Table 1. Vertex values of d(i1, i2) in the two dimensional case.

x2 \ x1 · · · d1(σ1) d1(σ1 +1) · · ·
...

...
...

d2(σ2) · · · d(σ1,σ2) d(σ1 +1,σ2) · · ·
d2(σ2 +1) · · · d(σ1,σ2 +1) d(σ1 +1,σ2 +1) · · ·
...

...
...

Table 2. Vertex values of f (i1, i2) in the two dimensional case.

x2 \ x1 · · · d1(σ1) d1(σ1 +1) · · ·
...

...
...

d2(σ2) · · · f (σ1,σ2) f (σ1 +1,σ2) · · ·
d2(σ2 +1) · · · f (σ1,σ2 +1) f (σ1 +1,σ2 +1) · · ·
...

...
...

tion [13]. The derivative ẏ is given by

ẏ =
∂ h
∂ x

{ f +gu} = L f h+Lghu,

where

∂ h
∂ x1

=
σ2+1

∑
i2=σ2

ω i2
2 (x2) · · ·

σn+1

∑
in=σn

ω in
n (xn)

× h(σ1 +1, i2, . . . , in)−h(σ1, i2, . . . , in)
d1(σ1 +1)−d1(σ1)

,

∂ h
∂ x2

=
σ1+1

∑
i1=σ1

ω i1
1 (x1)

σ3+1

∑
i3=σ3

ω i3
1 (x3) · · ·

σn+1

∑
in=σn

ω in
n (xn)

× h(i1,σ2 +1, i3, . . . , in)−h(i1,σ2, i3, . . . , in)
d2(σ2 +1)−d2(σ2)

,

...

∂ h
∂ xn

=
σ1+1

∑
i1=σ1

ω i1
1 (x1) · · ·

σn−1+1

∑
in−1=σn−1

ω in−1
n−1 (xn−1)

× h(i1, . . . , in−1,σn +1)−h(i1, . . . , in−1,σn)
dn(σn +1)−dn(σn)

.

If Lgh = 0, then ẏ = L f h is independent of u. We continue
to calculate the second derivative of y, denoted by y(2) and
then we obtain

y(2) =
∂{L f h}

∂ x
( f +gu) = L2

f h+LgL f hu.

Once again, if LgL f h = 0, then y(2) = L2
f h is independent

of u. Repeating this process, we observe that, if h satisfies

LgLi
f h = 0, i = 0,1, . . . ,ρ −2,

LgLρ−1
f h �= 0,

then u does not appear in the equations of y, ẏ, . . . ,y(ρ−1)

and appears in the equation of y(ρ) with a nonzero coeffi-

Table 3. Vertex values of g(i1, i2) in the two dimensional case.

x2 \ x1 · · · d1(σ1) d1(σ1 +1) · · ·
...

...
...

d2(σ2) · · · g(σ1,σ2) g(σ1 +1,σ2) · · ·
d2(σ2 +1) · · · g(σ1,σ2 +1) g(σ1 +1,σ2 +1) · · ·
...

...
...

Table 4. Vertex values of h(i1, i2) in the two dimensional case.

x2 \ x1 · · · d1(σ1) d1(σ1 +1) · · ·
...

...
...

d2(σ2) · · · h(σ1,σ2) h(σ1 +1,σ2) · · ·
d2(σ2 +1) · · · h(σ1,σ2 +1) h(σ1 +1,σ2 +1) · · ·
...

...
...

cient:

y(ρ) = Lρ
f h+LgLρ−1

f hu.

The foregoing equation shows that the system is input-
output linearizable, as the state feedback control

u =
−Lρ

f h+ v

LgLρ−1
f h

reduces the input-output map to y(ρ) = v, which is a chain
of ρ integrators. In this case, the integer ρ is called the
relative degree of the system. The relative degree is de-
rived using the following definition [14]:

Definition 3.1: The nonlinear system is said to have a
relative degree ρ , 1 ≤ ρ ≤ n, in a region D0 ⊂ D if⎧⎨

⎩
LgLi

f h = 0, i = 0,1, . . . ,ρ −2

LgLρ−1
f h �= 0,

. . . . . (2)

for all x ∈ D0.
The input-output linearized system can be formulated

as ⎧⎨
⎩

ξ̇ = Aξ +Bv,

y = Cξ ,
. . . . . . . . . . . . (3)

where ξ ∈ ℜρ , and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 · · · 0 1
0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

, C =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
...
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

T

.

According to the relative degree, three cases of linearized
systems (3) must be considered.
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• Relative degree: ρ = n

In this case, the state vector of the input-output lin-
earized system is ξ = (h, L f h, . . . , Lρ−1

f h)T . The
state vector z should necessarily be a diffeomor-
phism.

• Relative degree: ρ < n

This is an unobservable state (n−ρ dimensions). It
is necessary to consider the zero dynamics of the un-
observable state μ . The state vector z should neces-
sarily be a diffeomorphism. z =

(
ξ , μ

)T , ξ ∈ ℜρ ,
μ ∈ ℜn−ρ ,

μ̇(ξ ,μ) = ζ1(ξ ,μ)+ζ2(ξ ,μ)v.

μ̇(0,μ) is characterized by zero dynamics.

• In the case of LgLi
f h = 0, ∀i, the proposed approach

cannot be applied.

When the relative degree ρ ≤ n, the input-output lineariz-
ing controller is

u = α +β v, . . . . . . . . . . . . . . (4)

where

α =
−Lρ

f h

LgLρ−1
f h

, β =
1

LgLρ−1
f h

.

Hereafter, we assume that the relative degree is n (full).
The stabilizing linear controller v =−Kξ of the linearized
system (3) can be obtained so that the transfer function
G = C(sI−A)−1B is Hurwitz.

3.2. Robust PML Controller
It is necessary to design a robust controller, as the PML

model is a nonlinear approximation. We designed a ro-
bust PML controller [15] for the PML system using the
robust feedback linearization method [16]. Consider the
following linearized system around an operating point:{

ξ̇r =Arξr +Brvr,

y =Crξr,
. . . . . . . . . . . (5)

where Ar = ∂ f (0)/∂ x and Br = g(0). The distributions
G0,G1, . . . ,Gn−1 are defined as

G0 = span{g1,g2, . . . ,gm},
G1 = span{g1, . . . ,gm,ad f g1, . . . ,ad f gm},

...
Gi = span{adk

f g j : 0 ≤ k ≤ i,1 ≤ j ≤ m},
for i = 0,1, . . . ,n−1.

Proposition 3.1: If the PML system (1) satisfies the
following conditions [16],

1. Distribution Gi has a constant dimension near x = 0
for 0 ≤ i ≤ n−1,

2. Distribution Gn−1 has a dimension n,

3. Distribution Gi is the involutive for 0 ≤ i ≤ n−2,

then the robust controller (6) in [15] can be derived as
ur = αr +βrvr . . . . . . . . . . . . . (6)

and the coordinate transformation vector ξr is defined by
αr = α +β LT−1ξ , βr = β R−1,

ξr = T−1ξ ,

where ξ = (h, L f h, . . . , Lρ−1
f h)T and

L = −LgLρ−1
f h

∂ α
∂ x

∣∣∣∣
x=0

, T =
∂ ξ
∂ x

∣∣∣∣
x=0

,

R =
1

LgLρ−1
f h

.

The PML system (1) is transformed into the system (5).
The linear controller vr = −Krξr can be obtained so that
the transfer function Gr = Cr(sI−Ar)−1Br is Hurwitz.

3.3. Tracking PML Controller
We show a tracking control [17] for PML systems.

Consider the following reference signal model{
ẋt = ft ,
yt = ht .

. . . . . . . . . . . . . . (7)

where ft is assumed to be sufficiently smooth in a domain
D ∈ Rn and the output is defined in Cρ([0,∞]). The con-
troller is designed to make the error signal ε = y−yt → 0
as t → ∞. The control object minimizes the difference
between the outputs y and yt . The time derivative of ε is

ε̇ = ẏ− ẏt = L f h+Lghu−L ft ht .

If Lgh = 0, then we obtain

ε̇ = L f h−L ft ht .

We continue to calculate the following derivative.

ε̈ = ÿ− ÿt = L2
f h+LgL f hu−L2

ft ht .

If LgL f h �= 0, then we repeat this calculation until the con-
troller u appears. Finally, we obtain

ε(ρ) = Lρ
f h+Lρ−1

g L f hu−Lρ
ft ht ,

Lρ−1
g L f h �= 0.

We set the linearizing coordinate vector

ξt =
(
ε1 ε2 · · · ερ

)T
.

Then, the linearized system is ξ̇t = Aξt +Bvt , where A and
B are the same as Eq. (3),

ε1 = ε = h−ht ,

ε2 = ε̇ = L f h−L ft ht ,

...
ερ = ε(ρ−1) = Lρ−1

f h−Lρ−1
ft ht ,

vt = ε(ρ) = Lρ
f h−Lρ

ft ht +LgLρ−1
f hu

and vt = −Ktξt is a linear controller of the linearized sys-
tem. The model following the controller is obtained as

ut = αt +βtvt , . . . . . . . . . . . . . (8)
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where

αt =
−Lρ

f h+Lρ
ft ht

LgLρ−1
f h

, βt =
1

LgLρ−1
f h

.

3.4. Observer for PML Systems
We propose an observer of the PML system (1) based

on the observer linearization problem [14]. If there exists
a coordinate transformation ζ = ϕ(x) such that the PML
system (1) can be transformed into the following system:

ζ̇ = Aoζ + k + ru,

y = Coζ

with (Co,Ao) observable and k,r : R → Rn, then it would
be possible to build a full-order state observer [11]

˙̂ζ = Aoζ̂ + k + ru+H(ŷ− y),
ŷ = Coζ̂ ,

. . . . . . (9)

where

Ao =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0
1 0 · · · 0 0

0 1
. . .

...
...

...
. . . . . . 0 0

0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎠ , Co =

⎛
⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎠

T

,

and H is the observer gain. The estimation error e = ζ̂ −ζ
satisfies the linear differential equation

ė = (Ao +HCo)e. . . . . . . . . . . . (10)

The estimation state is x̂ = ϕ−1(ζ̂ ). This problem is re-
ferred to as the observer linearization problem. The fol-
lowing theorem provides a necessary and sufficient condi-
tion for the solution of the observer linearization problem.

Theorem 3.1: The observer linearization problem [14]
is solvable if and only if there exists a neighborhood V
of an initial condition x0 that satisfies the following two
conditions.

1. dim
(

span{dh,dL f h, . . . ,dLn−1
f h}

)
= n, where ∀x ∈

V and d indicates a time derivative.

2. [adi
f τ,ad j

f τ] = 0, where 0 ≤ i ≤ n−1, 0 ≤ j ≤ n−1,
x ∈V and [ ] indicates a Lie bracket. The vector field
τ satisfies(

dh,dL f h, . . . ,dLn−1
f h

)T
τ =

(
0, . . . ,0,1

)T
.

If the PML system (1) is observer linearizable there exists
a coordinate transformation ϕ that satisfies the following
condition.

L(−1) j−1ad j−1
f τ ϕi =

{
0, i �= j,

1, i = j.
. . . . . . (11)

A coordinate transformation can be constructed as ζ =
ϕ = (ϕ1,ϕ2, . . . ,ϕn)T .

3.5. Observer-Based PML Controller Designs
This paper proposes observer-based PML controllers.

We denote several observer-based PML controllers. It is
also necessary to construct an observer gain H such that
the system (10) is Hurwitz.

3.5.1. Observer-Based PML Controller
Substituting the estimation state x̂ = ϕ−1(ζ̂ ) into the

controller (4), the observer-based PML controller can be
designed as

u(x̂) = α(x̂)+β (x̂)v, . . . . . . . . . (12)

where v = −Kξ̂ and ξ̂ = (h(x̂),L f h(x̂), . . . ,Lρ−1
f h(x̂))T .

3.5.2. Observer-Based Robust PML Controller
Substituting the estimation state x̂ = ϕ−1(ζ̂ ) into the

controller (6), the robust observer-based PML controller
can be designed as

ur(x̂) = αr(x̂)+βr(x̂)vr, . . . . . . . . (13)

where vr = −Krξ̂r and ξ̂r = T−1ξ̂ .

3.5.3. Observer-Based Tracking PML Controller

Substituting the estimation state x̂ = ϕ−1(ζ̂ ) into the
controller (8), the controller can be designed as

ut(x̂) = αt(x̂)+βt(x̂)vt , . . . . . . . . (14)

where vt = −Kt ξ̂t and ξ̂t = (h(x̂) − hr,L f h(x̂) −
L frhr, . . . ,L

ρ−1
f h(x̂)−Lρ−1

fr hr)T .

4. Observers and Controllers for Nonlinear
Systems

4.1. Two Dimensional Nonlinear System
Consider a two dimensional nonlinear system as fol-

lows:{
ẋ = f +gu,

y =h,

where f =
(
sinx2 −x2

1
)T , g =

(
0 1

)T , and h = x1. The
feedback linearizing controller is calculated as

u =
−L f h+ v

LgL f h
= x2

1 +
1

cosx2
v. . . . . . . (15)

The controller cannot be defined outside −π/2 < x2 <
π/2, as the relative degree is not defined for x2 = ±π/2.

The state space is divided into the regions x1 ∈
{d1(σ1), d1(σ1 +1)} and x2 ∈ {d2(σ2), d2(σ2 +1)} with
respect to the nonlinear terms sinx2 and x2

1, respectively.
The PML model is constructed as

ẋ =
(

ωσ2
2 sind2(σ2)+ωσ2+1

2 sind2(σ2 +1)
−ωσ1

1 d1(σ1)2 −ωσ1+1
1 d1(σ1 +1)2

)
+

(
0
1

)
u,

y =x1.
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Using the same method as the controller (15), the PML
controller is calculated as

u =(d1(σ1)+d1(σ1 +1))x1 −d1(σ1)d1(σ1 +1)

+
d2(σ2 +1)−d2(σ2)

sind2(σ2 +1)− sind2(σ2)
v.

Dividing the vertices d2(σ2 + 1) and d2(σ2) so that
sind2(σ2 + 1) �= sind2(σ2), there exists a controller out-
side the bound −π/2 < x2 < π/2, as the denominator of
the controller is not 0.

4.2. Ball and Beam System

The dynamics of a ball and beam (BAB) system [18] is
given by{

0 =r̈ +Gsinθ − rθ̇ 2,

υ =(Mr2 + J)θ̈ +2Mrṙθ̇ +MGr cosθ ,
. . (16)

where J is the moment of inertia of the beam, M is the
mass of the ball, G is the acceleration of gravity, θ is the
angle of the beam, r is the position of the ball, and υ is
the torque applied to the beam. Using the invertible trans-
formation

υ = 2Mrṙθ̇ +MGr cosθ +(Mr2 + J)u . . . (17)

to define a new input variable u, the system is expressed
as ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
ẋ =

⎛
⎜⎝

x2
x1x2

4 −Gsinx3
x4
0

⎞
⎟⎠+

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠u,

y =x1,

. . . . (18)

where x = (x1,x2,x3,x4)T = (r, ṙ,θ , θ̇ ).

4.2.1. PML Model for BAB System

We construct a PML model of the BAB sys-
tem (18). The nonlinear terms x1x2

4 and sinx3 of the
BAB system are transformed into PML model rep-
resentations. The variables x1, x3, and x4 are di-
vided by m1 vertices, x1 ∈ {d1(1), . . . ,d1(m1)}, m3 ver-
tices, x3 ∈ {d3(1), . . . ,d3(m3)} and m4 vertices, x4 ∈
{d4(1), . . . ,d4(m4)}, respectively. The PML model can
be expressed as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
ẋ = f +gu =

⎛
⎜⎝

x2
f2(x1,x3,x4)

x4
0

⎞
⎟⎠+

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠u,

y =h = x1,

. (19)

where x ∈ Rσ1σ2σ3σ4 ≡ [d1(σ1),d1(σ1 + 1)] ×
[d2(σ2),d2(σ2 + 1)] × [d3(σ3),d3(σ3 + 1)] ×

[d4(σ4),d4(σ4 +1)],

f2(x1,x3,x4) = f 1
2 (x1,x4)+ f 2

2 (x3),

f 1
2 (x1,x4) =

σ1+1

∑
i1=σ1

σ4+1

∑
i4=σ4

wi1
1 (x1)w

i4
4 (x4)d1(i1)d4(i4)2,

f 2
2 (x3) =

σ3+1

∑
i3=σ3

wi3
3 (x3)(−Gsind3(i3)),

ωσ1
1 (x1) =

(d1(σ1 +1)− x1)
(d1(σ1 +1)−d1(σ1))

,

ωσ1+1
1 (x1) =

(x1 −d1(σ1))
(d1(σ1 +1)−d1(σ1))

,

ωσ3
3 (x3) =

(d3(σ3 +1)− x3)
(d3(σ3 +1)−d3(σ3))

,

ωσ3+1
3 (x3) =

(x3 −d3(σ3))
(d3(σ3 +1)−d3(σ3))

,

ωσ3
4 (x4) =

(d4(σ3 +1)− x4)
(d4(σ3 +1)−d4(σ3))

,

ωσ4+1
4 (x4) =

(x4 −d4(σ4))
(d4(σ4 +1)−d4(σ4))

,

σ1, σ3, and σ4 are integers: −∞ < σ1,σ3,σ4 < ∞,
d1(σ1) < d1(σ1 + 1), d3(σ3) < d3(σ3 + 1) and d4(σ4) <
d4(σ4 +1).

Note that the trigonometric functions of the BAB sys-
tem (18) are smooth functions and are of class C∞. The
PML models are not of class C∞. In the BAB system con-
trol, we must calculate the fourth derivatives of the output
y. Thus, the derivative PML models lose some dynamics.
In this study, we design a robust piecewise controller as
a countermeasure for the approximation error of the PML
model method.

4.2.2. PML Controller for BAB System

We define the output as y = x1 in x ∈ Rσ1σ2σ3σ4 , and the
time derivative of y is calculated as ẏ = L f h = x2. The
time derivative of y does not contain the control inputs u.
We calculate the time derivative of ẏ as follows:

ÿ = L2
f h = f2(x1,x3,x4)

=
σ1+1

∑
i1=σ1

σ4+1

∑
i4=σ4

wi1
1 (x1)w

i4
4 (x4)d1(i1)d4(i4)2

+
σ3+1

∑
i3=σ3

wi3
3 (x3)(−Gsind3(i3)).

The time derivative of ẏ also does not contain the control
inputs u. We continue to calculate the time derivative of
ÿ. We obtain

y(3) = L3
f h+LgL2

f hu

=
∂ f 1

2 (x1,x4)
∂ x1

x2 +
∂ f 2

2 (x3)
∂ x3

x4 +
∂ f 1

2 (x1,x4)
∂ x4

u.

. . . . . . . . . . . . . . . . . . (20)
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1

0 x3

(d3(3), fs(3))

(d3(4), fs(4))

π/2 (d3(5), fs(5))

fs(x3) = sinx3

fs(4)− fs(3))
d3(4)−d3(3)

Fig. 2. PML modeling (d3(3) = 0, d3(4) = π/2, d3(5) = π).

The piecewise controller u derived from Eq. (20) cannot
be defined at x1 = 0 or x4 = 0. In this study, we consider
the following approximate feedback linearization [14].

y(3) ≡ L3
f h =

∂ f 2
2 (x3)
∂ x3

x4

=
−Gsind3(σ3 +1)+Gsind3(σ3)

d3(σ3 +1)−d3(σ3)
x4.

We continue to calculate the time derivative of y(3). We
obtain

y(4) = LgL3
f hu

=
−Gsind3(σ3 +1)+Gsind3(σ3)

d3(σ3 +1)−d3(σ3)
u.

The stabilizing controller of Eq. (19) is designed as

u = α +β μ, . . . . . . . . . . . . . (21)

where

α = − L4
f h

LgL3
f h

, β =
1

LgL3
f h

,

and μ = −Fξ is the linear controller of the following lin-
ear system (22).{

ξ̇ =Aξ +Bμ,

y =Cξ ,
. . . . . . . . . . . . (22)

where ξ = (h, L f h, L2
f h, L3

f h)T ; A, B, and C are the
matrices of the Brunovsky canonical form. If fs(i) �=
fs(i + 1) and d3(i) �= d3(i + 1), i = 1, . . . ,m, there exists
a stabilizing controller (21) of the BAB system (19) as
det(Lgp L3

fp
hp) �= 0. Thus, we must construct the PML

model of the BAB system such that fs(i) �= fs(i + 1) and
d3(i) �= d3(i+1), where i = 1, . . . ,m (see Fig. 2).

Subsequently, we consider the PML model of the
torque (17).

υ = υ1 +υ2 +υ3u, . . . . . . . . . . . (23)

where

υ1 =
σ1+1

∑
i1=σ1

σ2+1

∑
i2=σ2

σ4+1

∑
i4=σ4

ω i1
1 (x1)ω i2

2 (x2)ω i4
4 (x4)

×2Md1(i1)d2(i2)d4(i4),

υ2 =
σ1+1

∑
i1=σ1

σ3+1

∑
i3=σ3

ω i1
1 (x1)ω i3

3 (x3)MGd1(i1)cosd3(i3),

υ3 =
σ1+1

∑
i1=σ1

ω i1
1 (x1)Md1(i1)2 + J.

Finally, we obtain the torque controller applied to the
beam when the controller (21) is substituted into the
torque controller (23).

4.2.3. Robust PML Controller for BAB System

The PML model is a nonlinear approximation. There-
fore it is necessary to design a robust controller. We
design a robust PML controller for the piecewise multi-
linear model via feedback linearization. We design the ro-
bust controller based on the following tangent linearized
system around an operating point.

ξ̇r = Arξr +Brvr, . . . . . . . . . . . (24)

where Ar = ∂ f (0)/∂ x and Br = g(0). The PML sys-
tem (19) satisfies the conditions in Proposition 3.1. Then
under the controller

ur = αr +βrvr . . . . . . . . . . . . (25)

and the coordinate transformation vector ξr defined by

αr = α +β LT−1, βr = β R−1,

ξr = T−1ξ ,

where ξ = (h, L f h, . . . , Lρ−1
f h)T , R = 1/(LgL3

f h),

L = −LgL3
f h

∂ α
∂ x

∣∣∣∣
x=0

, T =
∂ ξ
∂ x

∣∣∣∣
x=0

,

the system (19) is transformed into the system (24). A
robust linear controller vr is substituted into the con-
troller (25). As discussed in the previous section, sub-
stituting the controller (25) into Eq. (23), we obtain the
torque controller τ .

4.3. TORA System
We consider a translational oscillator with rotating ac-

tuator (TORA) system [18] shown in Fig. 3, which is one
of the benchmark problems for nonlinear control. The
TORA system has a cart of mass M connected to a wall
with a linear spring (constant k). The cart can oscillate
without friction in the horizontal plane. A rotating mass
m in the cart is actuated by a motor. The mass is eccentric
with a radius of eccentricity e and can be imagined to be
a point mass mounted on a massless rotor. The rotating
motion of the mass m controls the oscillation of the cart.
The motor torque is the control variable. We consider the
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Fig. 3. Kinematic model of the TORA system.

following system [18] after a coordinate transformation as
the TORA system.⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
ẋ = f +gu =

⎛
⎜⎝

x2
−x1 +λ sinx3

x4
0

⎞
⎟⎠+

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠u,

y =h = x1,

(26)

where x ∈ R4, y ∈ R, and u ∈ R.

4.3.1. PML Model for TORA System
We construct the PML model [11] of the TORA sys-

tem (26). The state variable x is divided by m1 ×m2 ×
m3 ×m4 vertices,

x1 ∈ {d1(1), . . . ,d1(m1)},x2 ∈ {d2(1), . . . ,d2(m2)},
x3 ∈ {d3(1), . . . ,d3(m3)},x4 ∈ {d4(1), . . . ,d4(m4)}.

The PML model is expressed as{
ẋ = f +gu,

y =h = x1,
. . . . . . . . . . . . . (27)

where x ∈ Rσ1σ2σ3σ4 ,

f =
σ1+1

∑
i1=σ1

σ2+1

∑
i2=σ2

σ3+1

∑
i3=σ3

σ4+1

∑
i4=σ4

ω i1
1 (x1)ω i2

2 (x2)ω i3
3 (x3)ω i4

4 (x4)

× (
d2(i2) −d1(i1)+λ sind3(i3) d4(i4) 0

)T
,

g =
(
0 0 0 1

)T
,

ωσ j
j (x j) =

d j(σ j +1)− x j

d j(σ j +1)−d j(σ j)
,

ωσ j+1
1 (x j) =

x j −d j(σ j)
d j(σ j +1)−d j(σ j)

,

j = 1, . . . ,4.

The model is observed to be fully parametric and the inter-
nal model dynamics is described by a multi-linear inter-
polation of the vertices: d1(i1), d2(i2), d3(i3), and d4(i4).
The PML model can be represented by a lookup table
(LUT).

Note that the trigonometric functions of the TORA sys-
tem (26) are smooth functions and are of class C∞. The

PML models are not of class C∞. In the TORA system
control, we must calculate the fourth derivatives of the
output y. Thus, the derivative PML models lose some dy-
namics. However, the PML model-based control for the
TORA system can be applied to a wider region compared
with the conventional one.

Note that there are some modeling errors because the
PML model is a nonlinear approximation. In the proposed
method, the vertices di( j) of an arbitrary number can be
set on an arbitrary position of the state space. Therefore,
the approximated error can be adjusted easily.

4.3.2. Nonlinear Controller for TORA System
We show the controller of the TORA system (26) via

feedback linearization [14]. We calculate the time deriva-
tives of the output y until the input u appears. Then the
feedback linearizing controller is obtained as

u =
−x1 +λ sinx3 +λ x2

4 sinx3

λ cosx3
+

1
λ cosx3

μ, . (28)

where μ is the linear controller for the linearized system:⎧⎨
⎩

ξ̇ = Aξ +Bμ,
y = Cξ ,
ξ = (h,L f h,L2

f h,L3
f h)T ,

A =

⎛
⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎠ ,B =

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠ ,C =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠

T

. (29)

However, the controller (28) is only well defined at
−π/2 < x3 < π/2 because the denominator of the con-
troller is λ cosx3. Hence, the rotor of the TORA system
can only be rotated at −π/2 < θ < π/2.

4.3.3. PML Controller for TORA System
The time derivative of the output y = x1 must be cal-

culated until the input u appears. Then, the PML con-
troller [11] of Eq. (27) is designed as

u =

−x1 +
σ3+1

∑
i3=σ3

ω i3
3 (x3)λ sind3(i3)

λ
sind3(σ3 +1)− sind3(σ3)

d3(σ3 +1)−d3(σ3)

+
d3(σ3 +1)−d3(σ3)

λ (sind3(σ3 +1)− sind3(σ3))
v, . . (30)

where v = −Kξ is the linear controller of the linear sys-
tem: ⎧⎪⎨

⎪⎩
ξ̇ =Aξ +Bv,
y =Cξ ,

ξ =(h, L f h, L2
f h, L3

f h)T .

The matrix A and the vectors B and C are the same as
Eq. (29).

If sind3(σ3) �= sind3(σ3 +1) and d3(σ3) �= d3(σ3 +1),
there exists a controller (30) of the TORA system (27) as

Vol.24 No.1, 2020 Journal of Advanced Computational Intelligence 19
and Intelligent Informatics



www.manaraa.com

Taniguchi, T. and Sugeno, M.

det(LgL3
f h) �= 0. Thus, it is necessary to construct a PML

model of the TORA system that satisfies the above condi-
tions. Note that the PML model-based controller (30) can
be applied to a wider region compared with the conven-
tional feedback linearized controller.

4.3.4. Robust PML Controller for TORA System
The parameters of the linearized system (5) are calcu-

lated as

Ar =

⎛
⎜⎜⎜⎜⎝

0 1 0 0

−1 0 λ
sind(σ3 +1)− sind(σ3)

d3(σ +1)−d3(σ)
0

0 0 0 1
0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

Br =

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠ .

The robust PML controller [15] is designed as

ur = αr +βrvr.

The coordinate transformation vector is obtained as

ξr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2

σ3+1

∑
i3=σ3

ω i3
3 (x3)sind3(i3)

sind3(σ3 +1)− sind3(σ3)
d3(σ3 +1)−d3(σ3)

x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

4.3.5. Observer for TORA System
The condition 1 of Theorem 3.1 is applied to the origi-

nal nonlinear system (26).

det
(

dhT dL f hT . . .dLn−1
f hT

)T
= λ 2 cos2 x3.

Thus, the above matrix is not linear independence at x3 ±
π/2. One of the condition 2 is also calculated for the
original nonlinear model as follows:[

ad0
f τ, ad3

f τ
]
=

2sinx3

λ 2 cos3 x3
.

The above equation is equal to 0 at x3 = 0 and the equation
cannot be defined at x3 ± π/2. Therefore, the nonlinear
system (26) is not observer linearizable.

4.3.6. PML Observer for TORA System
The condition 1 of Theorem 3.1 is applied to the PML

system (27).

det
(

dhT dL f hT . . .dLn−1
f hT

)T
= a �= 0,

where a is a non-negative constant value. The condition
2 of Theorem 3.1 is also applied to the original nonlinear
system (27).

[adi
f τ,ad j

f τ] = 0,

where 0 ≤ i ≤ 3, 0 ≤ j ≤ 3, and τ =
(
0 0 0 1/a

)T .
Therefore, the PML system (27) is observer linearizable.
From the condition (11), the coordinate transformation
vector is calculated as ϕ =

(
ax4 ax3 x2 x1

)T .

4.3.7. Observer-Based Tracking PML Controller for
TORA System

We design the tracking controller of the TORA sys-
tem using the PML model. Consider the reference signal
model (7). Then, the controller is designed to make the
error signal et = y− yr = h− ht → 0 as t → ∞. The time
derivative of the error e is obtained as

ėt = L f h−L ft ht(xt).

The time derivative is calculated until the input u appears.
Subsequently, the PML controller is obtained as

ut = αt +βtvt , . . . . . . . . . . . . (31)

where

αt = −L4
f h−L4

ft ht(xt)

LgL3
f h

, βt =
1

LgL3
f h

.

In Eq. (30), vt =−Ktξt is the linear controller of the linear
system:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ξ̇t = Aξt +Bν,

y = Cξt ,

ξt =

⎛
⎜⎜⎝

h−ht(xt)
L f h−L ft ht(xt)
L2

f h−L2
ft ht(xt)

L3
f h−L3

ft ht(xt)

⎞
⎟⎟⎠ .

The matrix A and the vectors B and C are the same as
Eq. (29).

5. Simulation Results

We show some examples to confirm the feasibility of
our proposals. Consider the following nonlinear systems:

5.1. Ball and Beam System
To construct the PML model of the BAB system, the

state variables x1, x2, x3, and x4 of the BAB system (16)
are divided by the following vertices

x1 ∈{−3, −1.5, 0, 1.5, 3}, x2 ∈ {−3, −1.5, 0, 1.5, 3},
x3 ∈{−π/8, −π/16, 0, π/16, π/8},
x4 ∈{−0.4, −0.2, 0, 0.2 0.4}.

The initial condition is x(0) = (1.5, 0, 0, 0)T and the ac-
celeration of gravity G = 9.81 m/s2. The nominal values
of the system parameters are as follows: M = 0.1 kg and
J = 0.1 kg·m2.

The model is observed to be fully parametric and can
be represented by an LUT. Table 5 shows the vertex val-
ues of f2(x1,x3,x4). The internal model dynamics is de-
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Table 5. Vertex values of f2(x1,x3,x4).

x4
x3 x1 −0.4 −0.2 0 0.2 0.4

−3 3.274 3.634 3.754 3.634 3.274
−1.5 3.514 3.694 3.754 3.694 3.514

−π/8 0 3.754 3.754 3.754 3.754 3.754
1.5 3.994 3.814 3.754 3.814 3.994
3 4.234 3.874 3.754 3.874 4.234
−3 1.434 1.794 1.914 1.794 1.434
−1.5 1.674 1.854 1.914 1.854 1.674

−π/16 0 1.914 1.914 1.914 1.914 1.914
1.5 2.154 1.974 1.914 1.974 2.154
3 2.394 2.034 1.914 2.034 2.394
−3 −0.480 −0.120 0 −0.120 −0.480
−1.5 −0.240 −0.060 0 −0.060 −0.240

0 0 0 0 0 0 0
1.5 0.240 0.060 0 0.060 0.240
3 0.480 0.120 0 0.120 0.480
−3 −2.394 −2.034 −1.914 −2.034 −2.394
−1.5 −2.154 −1.974 −1.914 −1.974 −2.154

π/16 0 −1.914 −1.914 −1.914 −1.914 −1.914
1.5 −1.674 −1.854 −1.914 −1.854 −1.674
3 −1.434 −1.794 −1.914 −1.794 −1.434
−3 −4.234 −3.874 −3.754 −3.874 −4.234
−1.5 −3.994 −3.814 −3.754 −3.814 −3.994

π/8 0 −3.754 −3.754 −3.754 −3.754 −3.754
1.5 −3.514 −3.694 −3.754 −3.694 −3.514
3 −3.274 −3.634 −3.754 −3.634 −3.274

Table 6. Vertex values of the PML controller (x2 = 1.5).

x4
x3 x1 −0.4 −0.2 0 0.2 0.4

−3 0.5244 −0.1085 −0.8498 −1.700 −2.658
−1.5 −0.1551 −0.4187 −0.7000 −0.9988 −1.315

−π/8 0 0.3420 0.2805 0.2189 0.1574 0.0958
1.5 2.378 2.242 2.123 2.022 1.938
3 6.316 5.718 5.228 4.847 4.574
−3 −0.5064 −1.145 −1.889 −2.737 −3.689
−1.5 −0.5228 −0.7874 −1.069 −1.368 −1.683

−π/16 0 0.2536 0.1921 0.1305 0.0690 0.0074
1.5 2.171 2.036 1.917 1.816 1.731
3 5.579 4.987 4.500 4.116 3.837
−3 −1.395 −2.034 −2.777 −3.625 −4.577
−1.5 −0.8214 −1.086 −1.368 −1.666 −1.982

0 0 0.1705 0.1089 0 −0.0142 −0.0757
1.5 1.929 1.794 1.675 1.574 1.489
3 4.804 4.212 3.724 3.341 3.062
−3 −2.205 −2.838 −3.579 −4.429 −5.387
−1.5 −1.071 −1.335 −1.616 −1.915 −2.232

π/16 0 0.0859 0.0243 −0.0372 −0.0988 −0.1604
1.5 1.630 1.493 1.374 1.273 1.189
3 3.922 3.324 2.834 2.453 2.180
−3 −2.869 −3.502 −4.243 −5.093 −6.051
−1.5 −1.258 −1.522 −1.803 −2.102 −2.418

π/8 0 0.0027 −0.0589 −0.1204 −0.1820 −0.2435
1.5 1.275 1.139 1.020 0.9189 0.8353
3 2.923 2.325 1.835 1.454 1.181

scribed by a multi-linear interpolation of the LUT ele-
ments (see Fig. 1).

We apply the PML controller in Table 6 and the ro-
bust PML controller in Table 7 to a nominal BAB system
(16) and a BAB system with parameter variation in com-
puter simulations. The torque controllers are observed to
be fully parametric and can be represented by an LUT.
Owing to lack of space, the PML controllers at x2 = 1.5
are only shown in Tables 6 and 7. The internal model dy-
namics is described by a multi-linear interpolation of the
LUT elements.

Figure 4 shows the control responses x1, . . . ,x4 of the
nominal BAB system. In Figs. 5 and 6, we consider the
parameter variations with respect to the mass M of the

Table 7. Vertex values of the robust PML controller (x2 = 1.5).

x4
x3 x1 −0.4 −0.2 0 0.2 0.4

−3 4.137 3.546 2.489 0.9751 −0.7469
−1.5 1.528 1.223 0.8205 0.3242 −0.1855

−π/8 0 1.016 0.9254 0.8208 0.7041 0.6000
1.5 5.079 4.792 4.514 4.253 4.086
3 16.190 14.96 13.93 13.11 12.75
−3 1.379 0.7393 −0.3320 −1.824 −3.549
−1.5 0.6004 0.2811 −0.1255 −0.6153 −1.127

−π/16 0 0.7563 0.6612 0.5554 0.4407 0.3355
1.5 4.315 4.016 3.736 3.480 3.308
3 13.75 12.48 11.44 10.64 10.26
−3 −1.295 −1.962 −3.033 −4.499 −6.223
−1.5 −0.2788 −0.6066 −1.013 −1.494 −2.006

0 0 0.4944 0.3967 0 0.1788 0.0736
1.5 3.493 3.185 2.905 2.657 2.485
3 11.18 9.896 8.853 8.076 7.696
−3 −3.919 −4.591 −5.649 −7.081 −8.803
−1.5 −1.120 −1.451 −1.853 −2.323 −2.833

π/16 0 0.2275 0.1284 0.0238 −0.0848 −0.1889
1.5 2.599 2.285 2.008 1.772 1.606
3 8.470 7.159 6.124 5.386 5.026
−3 −6.313 −7.012 −8.069 −9.475 −11.20
−1.5 −1.869 −2.208 −2.611 −3.072 −3.582

π/8 0 −0.0286 −0.1304 −0.2350 −0.3409 −0.4450
1.5 1.683 1.361 1.083 0.8562 0.6893
3 5.741 4.404 3.369 2.657 2.297

Fig. 4. State responses of the nominal BAB system.

ball. Figs. 5 and 6 show the control responses of the BAB
systems with parameter variations (the masses of the ball:
M′ = 1.1M and M′ = 1.2M). The results confirm the feasi-
bility of the proposed robust PML controller for the BAB
system with parameter variations.

5.2. TORA System
The observer-based PML controllers (12) and (13) are

applied to the TORA system (26) in computer simulation.
In the simulations, the state variables x1, x2, x3, and x4 of
the TORA system are divided by the following vertices:

x1 ∈ {−2.0, 0, 2.0}, x2 ∈ {−2.0, 0, 2.0},
x3 ∈ {−π,−7π/8, . . .,π}, x4 ∈ {−2.0, 0, 2.0}.

The parameter λ is 0.5 and the initial condition is x(0) =
(0.5, 0, 0, 0)T .

Figures 7, 8, and 9 show the simulation re-
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Fig. 5. State responses of the BAB system with parameter
variation (M′ = 1.1M).

Fig. 6. State responses of the BAB system with parameter
variation (M′ = 1.2M).

sults obtained using the observer-based PML
controller (12), where the feedback gain K =
(1.000, 3.078, 4.236, 3.078) and the observer gain
H = (1, 3.078, 4.236, 3.078)T such that the linearized
and observer systems are stable, respectively. These
gains are designed using linear quadratic Gaussian
(LQG) methods for the linearized systems. These figures
show that the controller (12) cannot stabilize the TORA
system (26) with the estimation errors e = ζ̂ − ζ of the
observer (9).

Figures 10, 11, and 12 show the simulation re-
sults obtained using the robust observer-based PML con-
troller (13), where the feedback and observer gains (K and
H) are, respectively, the same as those of the observer-
based PML controller (12). The controller (13) can sta-
bilize the TORA system (26) with the estimation errors
e = ζ̂ −ζ of the observer (9).

The observer-based tracking PML controller (14) is ap-
plied to the TORA system (26) in computer simulations.
In the simulations, the state variables x1, x2, x3, and x4

Fig. 7. State responses (x1, x2, x3, and x4) obtained using
the observer-based PML controller (12).

ζ

ζ

ζ

ζ

Fig. 8. State responses (ζ1 and ζ2) and the estimations ob-
tained using the observer-based PML controller (12).

ζ

ζ

ζ

ζ

Fig. 9. States responses (ζ3 and ζ4) and the estimations
obtained using the observer-based PML controller (12).
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Fig. 10. State responses (x1, x2, x3, and x4) obtained using
the robust observer-based PML controller (14).

ζ

ζ

ζ

ζ

Fig. 11. State responses (ζ1 and ζ2) and the estimations ob-
tained using the robust observer-based PML controller (14).

ζ

ζ

ζ

ζ

Fig. 12. State responses (ζ3 and ζ4) and the estimations ob-
tained using the robust observer-based PML controller (14).

of the TORA system are divided by the same vertices as
those in the previous example. The parameter λ and the
initial condition x(0) are also, respectively, the same as
those in the previous example. We consider the following
reference signal model:{

ẋt = at cost,
yt = ht = xt ,

where at = 0.2.
Figures 13, 14, and 15 show the simulation

results obtained using the observer-based tracking
PML controller (14), where the feedback gain Kt =
(1.000, 3.078, 4.236, 3.078) and the observer gain H =
(10.00, 25.09, 26.47, 12.37)T such that the linearized
and observer systems are stable, respectively. These gains
are designed using LQG methods for the linearized sys-
tems.

The PML controller (14) stabilizes the TORA sys-
tem (26) with the estimation error e = ζ̂ −ζ and the track-
ing error et = y− yr. In Fig. 13, the solid line and the
dotted line of the upper figure indicate the control input
y and the reference signal yr, respectively. The solid line
of the lower figure indicates the error signal y− yr. In
Figs. 14 and 15, the solid lines and the dotted lines indi-
cate the state responses (ζ1, ζ2, ζ3, and ζ4) and the esti-
mated states, respectively.

6. Conclusion

This paper has proposed observer-based piecewise
multi-linear controllers for nonlinear systems using piece-
wise multi-linear models. The piecewise model is a non-
linear approximation and is fully parametric. Feedback
linearizations have been applied to stabilize the piece-
wise multi-linear control system. Observer linearizations
are more conservative in modeling errors compared with
feedback linearizations. In this paper, we have proposed
robust observer designs for piecewise multi-linear sys-
tems. In addition, we have designed piecewise multi-
linear controllers that combines the robust observer with
various performance such as a regulator and a tracking
controller. These design methods realize a separation
principle that allows an observer and a regulator to be
designed separately. Examples have been demonstrated
through computer simulation to confirm the feasibility of
our proposals. In future work, the proposed methods will
be applied to real systems.
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